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ON UNIQUENESS CONDITIONS IN THE SMALL FOR THE STATE OF 
HYDROSTATIC COMPRESSION OF A SOLID* 

L. M. ZUBOV 

The governing inequality assuring the stability ofanyhomogeneous anisotropicelastic 

body subjected to a multilateral follower pressure is formulated. A comparison is 
given between the uniqueness conditions for the state of hydrostatic compression 

and the governing inequalities of Hill, Hadamard, and Coleman-Nell. The variant 
when part of the body boundary slides along a smooth solid surface is also consider- 

ed for an isotropic incompressible body. If the external pressure is a dead load, 
the condition mentioned does not assure uniqueness of the solutions of the neutral 

equilibrium equations. The problem of determining the critical pressure for dead 
loading of an isotropic incompressible body reduces to a problem of minimizing a 

functional. 

The condition of no adjacent equilibrium modes (i.e., stability in the sense of a static 

Euler criterion) for an elastic body loaded by multilateral hydrostatic pressure was proposed 

by Lur'e /l/ as the necessary condition imposing a constraint on the mode of the law of the 

material state. Constraints on the dependence of the specific potential energy of an iso- 

tropic material on the relative change in volume were found from this condition in /l/. 

1. The equilibrium equations for an elastic body linearized in the neighborhood of a 

certain initial state of stress have the following form in the absence of additional mass 

forces V.8=0, Q=T'+TtrL-Lr.T (1.1) 

L=Vw, w=R.=[-$(R+W]~=~, T'=[++w)]~,;~ 

Here V is the nabla-operator in the metric of the initial state of strain R is a radius 

vector, T is the Cauchy stress tensor, and w is the vector of small additional displacements. 

The upper dot denotes linear increments of the tensor, vector, or scalar quantitiesina fixed 

material particle which are due to the superposition of additional displacements. Theseincre- 

ments can be interpreted as material rates of change in the appropriate quantities if the 

parameter '1 is identified with time and the vector w with the particle velocity vector. 

For an elastic material the Cauchy stress tensor is a function of the gradient of the 

strain C. Taking into account that c' 7~ C.L, we can write 

T'=[-$T(C+nC.L)]q+ (1.2) 

It follows from (1.1) and (1.2) that the tensor 0 is a linear function of the tensor L. 

Moreover, it depends nonlinearly on the gradient of the strain corresponding to the initial 

strain configuration. We rewrite the representation of the tensor 0 as follows: 
0 (C, L) = S---T.Q -t- S2.T + T tr L - Lr.T 

S = T'+ T.Q-Q.T> Q= lj?(Lr - L) 
(1.3) 

The symmetric tensor S is the rate of change of the 'stress tensor in the Jaumann sense 

/2,3/. 
The law of the state of an ideal elastic (hyperelastic) material has the form /l/ 

T ~: Cr.P.C, P m= 'J-'dlli/ dG, G _: C.C“, / = cict C (1.4) 

Here G is a measure of the Cauchy strain, and rv(G) is the density of the potential 

strain energy per unit volume of the measured configuration. From (1.4) we have 

s = C'.P'.C -t E.T + T.F, E = '/,(L + LT) (1.5) 

Since G'= 2C.a.CT, it follows from (1.4) and (1.5) that the tensor S is independent of 

the spin 9 and is a linear function of the strain rate tensor E 

S(C, &)=K(~)..E (1.6) 

By using (1.4) it can be shown that the fourth-rank tensor K allows of the following 
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representation (E is the unit tensor) 

K (C) = dJ (C) - TE (1.7) 

where the tensor @ is symmetric relative to permutation of pairs of subscripts (11 ninii = (I’rjmn. 

We call the state of an elastic body loaded by a multilaterial uniform hydrostatic pres- 

sure of intensity p a p-configuration. Such a loading evokes a certain affine deformation 

in a homogeneous body, whose gradient will be denoted by C,. We shall also denote the 

measures of the deformation corresponding to the p-configuration by the subscript p. 

Since 'I' = --pE in a p-configuration, we obtain from (1.3) 

(3 = s (C,, E)+ p (CG - EV.w) (1.8) 

The boundary conditions on the surface of a body 0 in a problem on the superposition of 

a small, on a finite deformation with the following nature of the pressure taken into account, i 
have the form /l/ 

K.0 z pN.(Vwr - EV.n) (1.9) 

Here N is the unit vector of the external normal to the surface 0. Taking account of the 

identity V.(Vw*-EV.w) == 0 , and the representation (1.8), we write the boundary condition 

about small deformations from the p-configuration in the form 

V.S: 0 in volume 1', N.S=O on 0 (1.10) 

According to (1.7), the tensor of the "instantaneous elastic moduli" li does not generally 

possess the property of invariance relative to permutation of pairs of subscripts. However, 

this property is evidently satisfied in the p-configuration. 
The boundary value problem (1.10) is completely identical to the problem for a homogene- 

ous anisotropicbodyin classical linear elasticity theory /l/. Its solution is unique (to 

the accuracy of a rigid displacement) under the condition 

S (C,,. E) ..E > 0 or F . . K (C,) . E > 0, Ye# 0 (1.11) 

Let us note that the uniqueness of the solution of problem (1.10) will hold also in case the 

following is taken in place of condition (1.11); 

s (C,.&) .’ &< 0, Ve p 0 (1.12) 

However, in contrast to (1.12) the inequality (1.11) not only assures the uniqueness of the 

solution but also is related, in a definite sense, to the stability of the p-configuration. 

Indeed, the potential energy of a hyperelastic body, loaded over the whole surface by uniform 

hydrostatic pressure, is given by the expression /l/ (L. is the body volume in the reference 
configuration) 

Referring 

II =sssw + P-4 du (1.13) 

to (l-3), formula (11) in /5/, and the relationship 

~det(C+?C.L)],,=n=J(t~iL-L.,L) 

we arrive at the following expression for the second variation of the functional (1.13) in the 

neighborhood of the p-configuration: 

2. Condition (1.11) which assures the uniqueness and stability of any p-configuration 
imposes a constraint on the response function of an elastic material, i.e., is a governing 

inequality. It can be extended (not by a unique method it is understood) to the whole config- 

uration of an elastic body. The simplest and most natural extension of condition (1.11) will 
be the inequality 

S (C, e) . . E > 0, b.E # 0 (2.1) 

where C is any nonsingular tensor, i.e., the gradient of the strain corresponding to an arbit- 
rary and not only a p-configuration. Since the strain rate tensor and the Jaumann deriva- 
tive ofthecauchy stress tensor aretensorsindependentofthereference system, condition (2.l)does 

not contradict the requirement of invariance relative to the choice of the observer. 
In the case of an isotropic material, we take some undistorted state /6/, for instance, 

a natural unstressed state, as the reference configuration. Then by using (1.5) it can be 
shown that the tensor S will be an isotropic function of the tensors E and g = (Cr.C)-I, where 
g is a measure of the Almansi strain. The Cauchy stress tensor is an isotropic function 
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of the tensor g in this case. Assuming a dependence between T and g to be mutually single- 
valued, it can be assumed that S = S (T, e). In such form the inequality (2.1) can be used for 
plastic materials also. 

The law of the state of an isotropic elastic material can be given by an isotropic func- 

tion 0 /l/ 

S = a(H). r, =,\.'L'.hr, H _= l/z ln G, A = U-'.C, U = G';: (2.2) 

Here 11 is the rotation tensor, U is the positive-definite square root of the Cauchy strain 

measure, and H is the logarithmic strain measure (the Hencky tensor). For a hyperelastic 
body we have /l/ 

.1X : tlCV / dH, In J = tr H (2.3) 

Let us prove that the relationship 

,s (C,,, F) . . e = X’ (II,, H') . . H' (2.4) 

is valid in any p-configuration of an isotropic body. 

We evidently have for the p-configuration of an isotropic material 

C,, = aQ. a = (p / p,,)-','a >O, j\,) -m- Q, U, = aE, H, = In aE (2.5) 

Here Q is an intrinsically orthogonal tensor, p is the material density in the p-configura- 

tion, and pa the density in the reference configuration. On the basis of (2.2) and (2.5), 

we obtain 
II '/,ln[(C, _1- 'lc,.L).(c,* + nLT.C,r)I = In aE + '/,ln (E + aqQ.e.Qr)+ 0 (q2) 

It hence follows that the formula 

ii' Y Q.P.Q~ (2.6) 

is valid in the p-configuration. 

The rate of change of the rotation tensor is associated with the spin as follows /J/: 

AkT.A :: Q + I/, (jlj2 - in)-‘[j,’ (y7A.e __ ~.g’:_) + jl (F.g- g.F) + g,&.g’Y’ - g’l’.e.g] (2.7) 

Here jl, jSr j3 are the principal invariants of the tensor g'/:. From (2.2), (2.5) and (2.7) we 
obtain for the p-configuration 

X' z Q.(‘r’_ Q2-T + T.Q).QT (2.8) 

Here (2.4) results from (2.6) and (2.8). 

The relationship (2.4) shows that the governing inequality 

1' (II. II') i. IT’ _ 0, VII' + 0 (2.9) 

is the sufficient condition for uniqueness in the small for the state of hydrostatic compres- 

sion of an isotropic elastic body. The inequalities (2.1) and (2.9) are distinct for an arbit- 

rary configuration but coincide, as shown above, for any p-configuration of an isotropic 

material. 

The inequality (2.9) differs somewhat from the condition proposed in /8/ for the convex- 

ity of the specific energy II' as a function of the logarithmic measure of the strain. BY 
virtue of (2.3), this latter condition is written thus: 

(JZ)' ..H’> 0, VH'# 0 (2.10) 

In a p-configuration the condition (2.10) becomes 

S.,E-pttr*s>o, vE#O (2.11) 

For a positive values of p, i.e.', for a compressive pressure, (1.11) evidently follows 

from (2.11). Therefore, the condition of convexity of the specific energy in the Hencky strain 

tensor is sufficient for the uniqueness and stability of the state of hydrostatic compression 

of an isotropic body. 
Let us note that condition (2.9) assures the stability of the p-configuration independ- 

ently of the sign of It is impossible to say this about condition (2.10). 

Let us compare (1.:;) with the governing inequalities of Coleman-No11 and Hadamard /6/ 

obtained by extension. The former is written thus 

0 (C, L) . .LT > 0, vL==LT-&#O (2.12) 

while the Hadamard inequality has the form 

O(C, L)..LT>O (2.13) 

for all tensors L representable as the dyadic product of vectors L :: Zab. The strengthened 
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Hadamard inequality 

0 (C, 2ab). .ba > 0, Va # 0, b # 0 (2.14) 

is the condition /6/ of strong ellipticity of the differential equation system of elasticity 

theory. 
According to (1.3), condition (2.12) becomes in the p-configuration 

s (C,, E). .E - p (t?E - ti- &*) > 0, tic # 0 (2.15) 

Comparing (2.15) with (l.ll), we see that the Coleman-No11 inequality does not assure unique- 

ness (to the accuracy of rigid displacement) of the boundary value problem (1.10). 

Let us note that in the case of an isotropic hyperelastic material the inequality (2.15) 

results from the condition of convexity of the specific energy Was a function of the tensor 

U - E. This is proved by a calculation analgous to that performed in deriving (2.4). 

Starting from (1.3), it can be verified that the strengthened Hadamard inequality will 

be the following in application to the p -configuration: 

S (C,, ab -t ba). ‘(ab + ba) > 0, Ya + 0, b # 0 (2.16) 

Evidently (2.16) follows from (1.11). The reverse assertion is not valid. 

Indeed, let us examine the case of an isctropic material as illustration. According to 

(2.5), the tensor S will be a linear isotropic function of E whose general representation 

has the form 
S = Z~(CL)E + h (c)E tr E (2.17) 

As is known from linear elasticity theory /l/, in application to (2.17), condition (1.11) is 

equivalent to the inequalities 
P>O, %+ 3h>O (2.18) 

In application to (2.17), the inequality (2.16) yields 

pn2b2 + (P + W.b)2> 0 (2.19) 

The first, but not the second, inequality in (2.18) results from (2.19). In fact, since 

(a.b)2~ a*62 for h= --3/+, condition (2.19) is satisfied while the second inequality in (2.18) 

is not. 

3. Only isochoric strains for which J = 1 are allowable in an incompressible elastic 

material, and the Cauchy stress tensor is determined by the strains of the particle neighbor- 

hoods to the accuracy of an arbitrary global tensor. In this case the representation of the 

tensor S has the form 

S=M(C)..e+qE (3.1) 

where 4 is an unknown function of the coordinates, and the linearized condition for incompres- 

sibility 

J' = tr L = tr e = v.\,' =Y 0 (3.2) 

is the additional equation to find it. 

The solution of the boundary value problem (1.10) for an incompressible body is unique 

(if the rigid displacement is discarded) under the condition 

S(C,, &)..E=E..M(Cp)..E>O, \E=+o, tr&=O (3.3) 

Since the incompressibility condition can be written in the form trII = 0, the undeter- 

mined global tensor component 2 does not take part in the inequality (2.10). Therefore, 

(2.10) is the convexity condition for the energy function in the Hencky tensor even in the 

case of an incompressible material /8/. Since the inequalities (2.9) and (2.10) are equival- 

ent in this case, we arrive at the conclusion that the Hill inequality for an isotropic in- 

compressible material will assure the uniqueness and stability of the p-configuration in- 
dependently of the sign of the pressure p. 

For an isotropic body the representation (3.1) has the form S = 2pE + qE, and the in- 

equality (3.3) reduces to the requirement P >o. 
Because of the incompressibility requirement (3.2), the vectors a,b in the strengthened 

Hadamard inequality should be subjected to the condition a.b =: 0. For this reason, conditions 

(1.11) and (2.16) are equivalent for an isotropic incompressible material. 

Since an isotropic incompressible material is not deformed in the p-configuration, and 

the Jaumann derivative of the stress tensor does not differ from the material derivative, the 

quantity 11 is the shear modulus, i.e., the proportionality factor between the angle of small 

shear and the tangential stress due to this shear. 
Let us consider the case of hydrostatic-pressure loading of an incompressible isotropic 

body, constrained by absolutely solid supports. Let us assume that the surface 0 bounding 



354 L. M. Zubov 

the body consists of three parts. The parts 0, is fixed completely, the body makes contact 
with a smooth solid surface on the part O,, and a uniform follower pressure p is applied on 
the surface 0,. Under such conditions the hydrostatic load will be conservative /9/. 

The formulated problem has the evident solution: there are no displacements, and the 

stress tensor has the form T = -pE at each point of the body. The body can hence be in- 
homogeneous. 

The boundary conditions of the bifurcation problem for the mentioned equilibrium position 

have the form (1.9) on 0, and w = 0 on 0,. As is known /l/, the condition N.O =- 0 is 
satisfied in the absence of a surface load. Since the smooth solid surface produces no reac- 
tion in the tangent plane, it seems at first glance that the boundary conditions on the part 
O2 of the surface will have the form 

?:.,v =O, N.O.D=O, D=E-NN (3.4) 

However, such a deduction will be erroneous in the general case. The correct boundary con- 
ditions can be obtained on 0, by linearizing the condition 

N.T.D = 0 (3.5) 

From (3.5) we have 

(N.T)'.D - N.T.(NN' i- NJ) =: 0 (3.6) 

Since N' = D.N', it follows from (3.5) that N.T.N'=O. Furthermore, we use the formulas 

obtained in /l/ 

(N.T)'= N.0 - N.T.N(V.wE - N.Vw.N), N' == N.(V.wE - Vwr)- N (V.w- N.Vw.N) (3.7) 

Taking (3.7) into account, we obtain in place of (3.6) 

N.O.D t- (S.T.N)N.(Vwr - V.wE).D = 0 (3.8) 

The incompressibility equation was not used in deriving the relationship (3.8), hence the 

linearized conditions of no friction on 0, have the form (3.8) for any elastic body. The 

condition of impenetrability N-w r= 0 should still be appended. The expression in the left 

side of (3.8) can be converted to another form. The following identity is valid 

Vwr -V.wE =: V x (E x w) (3.9) 

Let z?(r*. == 1,2) be some Gaussian coordinates on the surface O,, R,, R= the fundamental 

and reciprocal vector bases on 0, , and z the coordinate measured in a normal direction to 

the surface. We have the form (3.9) 

N.(Vwr - EV.w) = N.(N x E :< awi & + RB x E x Jw/ C%Z~~) (3.10) 

We set that the derivative of the normal with respect to the direction drops out of the ex- 

pression in the left side of (3.10), hence it is meaningful for a vector field w defined 

only on the surface OS. We arrive at the relationship 

N.(Vwr - EV.w) ==z RaN.dw / ii~a - NRa.dw / &a =R” (i?w / i_3sa -7 BapuS) - NIXa.& i LP (3.11) 

LL' = w.N, ua = n.R”, B,, : --K,;dS , c/r’* 

In another context, and without proof, formula (3.11) is presented in /lo/. Taking into 

account (3.11) and the impenetrability condition, the relationship (3.8) acquires the form 

N.O.D + (N.T.N)B,&Ra = 0 (3.12) 

It hence follows that the boundary conditions on 0, can be written in the form (3.4) 

only when this surface is a part of a plane. 
We obtain the final formulation of the boundary value problem about small deformations 

from a p-configuration for an isotropic incompressible body in the case of a follower pres- 

sure from (1.8) and (3.8) : 

v.s = 0, V.W = 0, s = p(V~ + VW*) + qE, w = 0 on 0,; N.S.D y= 0, N-w = 0 on 0, (3.13) 

N.S =0 on 0, 
(3.14) 

Under the condition 1~ > 0 the boundary value problem (3.13), (3.14) does not differ from the 

problem of classical linear elasticity theory of an incompressible material, and hence has 

just the trivial solution w = 0,~ = 0. This deduction is valid even for an inhomogeneous body, 

when the shear modulus is an arbitrary measurable function of the coordinates. The equality 

p = 0 is hence allowable in a set of measure zero. 
Let us still consider this problem under the assumption that a pressure distributed un- 

iformly over a surface 0, is a dead load. In this case the boundary conditions on 0, are 

formulated thus /l/: 

N.@-N.(S+-pVwr)-0 (3.15) 
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We shall assume the body to be homogeneous (p = const > 0), and the matrix of the co- 

efficients of the second quadratic form B,, positive-definite at every point of the surface 

0, . Since N is the external normal relative to the body, it is seen from the last formula 

in (3.11) that the surface 0, will be strictly concave in this case. 

We will examine the functional II,(W) defined in a set of differentiable vectors w sat- 

isfying the incompressibility condition (3.2) and the conditions w= 0 on O1 and N.w =o 

on 0, 

(3.16) 

It follows from the Korn inequalities /ll/ 

that the functional q(w) has a lower bound. Let qlo be its exact lower bound. The following 

minimum variational principle holds. 

If a function w0 exists such that 4 (wd =vo> then the boundary problem (3.13), (3.15) 

has the nontrivial solution w = w0 for P = PO = 2!&! (1 - QJ. 

Proof. Since the function wo makes the functional $ a minimum, we have 

(3.17) 

We obtain from (3.16) and (3.17) 

..Bsdl.=~o[?S$~~.Rlddl.+~SBalllURn~~PdO] (3.18) 

The relationship (3.18) is the definition of the generalized solution of the problem under 
consideration of the bifurcation of equilibrium. Considering the function w0 twice contin- 

uously differentiable, we arrive at the formulation of the boundary value problem in the form 

(3.13), (3.15). 
Indeed, (3.18) is converted as follows: 

Here y is a functional Lagrange multiplier for the incompressibility condition. After applic- 

ation of the divergence theorem, we will have in place of (3.19) 

Taking account of the support condition on 0,, the impenetrability condition on %I and 

the identity (3.11), we finally obtain from (3.20) 

- j j j v . [P(v’“o -:- VW,=) -t qE + PoVW,~] 6wdV + 1 i N [p (VW, + vwoT) + q~] . D . hwd0 + 
0, 

N. [P(Vw,~;- VW,~)+ r/E +pJw,=] . &vdO=O 

(3.21) 

Hence (3.13), (3.15) results from (3.21) and the arbitrariness of the function 6~. 

The author is grateful to L. P. Lebedev for useful comments. 

REFERENCES 

1. LUR'E, A. I., Theory of Elasticity. "Nauka", Moscow, 1970. 

2. SEDOV, L. I., Introduction to the Mechanics of a Continuous Medium, Fizmatgiz, Moscow,1962. 

3. LUR'E, A. I., On differentiation of tensors with respect to time. Trudy, Leningrad. Poly- 
tech. Inst., Vo1.318, 1971. 

4. FIKERA, G., Existence Theorems in Elasticity Theory, "Mir", Moscow, 1974. 

5. ZUBOV, L. M., Variational principles of the nonlinear theory of elasticity. Case of 
superpositiionof a small deformation on a finite. PMM, Vo1.35, No.5, 1971. 

6. TRUESDELL, C., First course in the Rational Mechanics of a Continuous Media..'Mir'i Moscow, 

1975. 



356 L. M. Zubov 

7. ZUBOV, L. M. On the Jaumann derivative for a second-rank tensor. Izv. Sev.- Kavkazsk. 
Nauchn. Tsentra Vyssh. Shkoly. Estestv. Nauki, No.2, 1976. 

8. HILL, R. On constitutive inequalities for simple materials. J. Mech. and Phys. Solids, 

Vo1.16, No.5, 1968. 

9. ZUBOV, L. M., On conservation conditions of a hydrostatic load on a shell, Trudy, Tenth 
Conf. on Shell and Plate Theory, Vol.1, Kutaisi, 1975."Metniereba'; Tbilisi, 1975 

10. ZUBOV, L. M., Theory of small strains of prestressed thin shells, PMM, Vo1.40, No.1, 1976. 

11. MOSOLOV, P. P. and MIASNIKOV, V. P., Proof of Korn inequality, Dokl. Akad. Nauk SSSR, Vol. 

201, No.1, 1971. 

Translated by M.D.F. 


